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ABSTRACT

Context. The magnetism of low-mass stars can have a significant impact on their activity and therefore the detection of exoplanets and
their properties. Spectropolarimetric observations show that many low-mass stars possess large-scale poloidal magnetic fields with a
considerable dipole component, which in some cases exhibit temporal dynamics (cycles or reversals). Although it is widely accepted
that magnetic fields of low-mass stars are generated by the dynamo process (i.e., stretching and twisting of magnetic field lines by
helical motions in stellar convective envelopes), numerical dynamo simulations show that it is hard to reproduce coherent oscillations
of large-scale magnetic fields with a dipolar symmetry as observed for the Sun when turbulent and compressible regimes are explored.
Aims. Modeling stellar dynamos is a real challenge, as it requires taking into account various interacting physical effects that develop
on different scales of time and length. Most previous 3D numerical studies partially avoided this problem by considering a numerical
domain with low density stratification, which may correspond to neglecting surface effects where density drops considerably. Our
work aims to address this question.
Methods. We performed three-dimensional direct numerical simulations of convective dynamos in extreme parameter regimes of
both strong turbulence and strong density stratification using the community-tested numerical software MagIC. The dynamics in such
systems, particularly the dominance of the Coriolis effects, depend on the depth of the fluid layer. Our strongly stratified dynamo
simulations exhibit rotationally influenced large-scale convective motions surrounded by a turbulent compressible surface layer.
Results. We find complex time variations of the magnetic field with flow regimes of a predominantly dipolar configuration with
respect to the few large-scale harmonics that would be captured by spectropolarimetry. In such regimes, the turbulent surface layer
induces a global magnetic pumping mechanism, transporting the magnetic energy into the deep interiors of our dynamo model. We
find that the dipole magnetic fields are in regimes of transition between solar- and anti-solar differential rotation and that they interact
dynamically with it.
Conclusions. The spatial distribution and temporal behavior of the large-scale fields is consistent with observations of low-mass stars,
which suggests magnetic pumping could promote time-dependent magnetic fields with a similar dipolar symmetry as observed for
the Sun and other solar-like stars. Our results suggest a parameter path in which dynamo models with complex multiscale dynamics
should be explored.
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1. Introduction

Beginning with the discovery of sunspot magnetic fields by
George Ellery Hale in 1908, the magnetic activity of the Sun
and solar-like stars has captivated astronomers for over a cen-
tury. These magnetic phenomena, which include the 11-year
solar cycle, auroras, and solar flares, arise from the dynamo
mechanism within stellar convection zones (Moffatt 1978;
Dormy & Soward 2007; Charbonneau 2020; Brun & Browning
2017). In such dynamos, the interaction of turbulent convec-
tion, differential rotation, and magnetic field generation cre-
ates a dynamic and self-sustaining system of magnetic energy
with a distribution depending on the astrophysical objects under
consideration. Extending our understanding to other stars of
similar types reveals both universal principles and fascinating
differences in magnetic behaviors (Donati & Landstreet 2009;
Jeffers et al. 2023).

Solar-like dynamos are particularly challenging to model due
to the vast range of scales and physical effects involved. From the
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millisecond timescales of Alfvén waves to the billion-year lifes-
pans of main-sequence stars, a comprehensive model must rec-
oncile processes occurring at vastly different temporal and spa-
tial resolutions. Observational data such as helioseismic profiles
provide valuable constraints for the dynamo models but simulta-
neously reveal the intricacies of phenomena such as differential
rotation and meridional circulation that need to be reproduced.
Numerical simulations have made significant strides in capturing
the broad features of solar-like dynamos, yet they remain limited
by computational resources and the inherent complexity of the
system (Käpylä et al. 2023). In general, dynamo action requires
a complex three-dimensional flow structure in order to bypass
anti-dynamo theorems (Cowling 1933). Thus, in addition to tem-
poral challenges, modeling stellar magnetism involves bridging
length scales ranging from the millimeter-scale eddies of convec-
tion to the global-scale flows spanning the entire stellar radius
and influenced by rotation and the Coriolis force. The equations
governing these magnetohydrodynamic (MHD) systems include
nonlinear interactions between these scales that are sensitive to
initial and boundary conditions. Dimensionless parameters (such
as the Rossby number) quantifying the rotational influence on
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convective turbulence help categorize different dynamo behav-
iors with respect to the flow regimes (Christensen & Aubert
2006; Schrinner et al. 2012; Gastine et al. 2012; Raynaud et al.
2015; Menu et al. 2020). However, they emphasize the transi-
tions between flow regimes that are still not well understood in
the context of stellar physics, such as from solar-like differential
rotation with fast equator and slow poles to inverse anti-solar
rotation (Gastine et al. 2014; Karak et al. 2015). These large-
scale zonal flows, generated by convective motions in rotat-
ing spherical shells (Christensen 2001), are important for the
dynamo process, as they shear the poloidal magnetic field into
toroidal field lines (the so-called Ω-effect).

Despite these challenges, advances in observational tech-
niques, such as spectropolarimetric Zeeman-Doppler imaging
(ZDI) (Donati & Landstreet 2009), asteroseismology, and chro-
mospheric Ca II H and K emission lines (Böhm-Vitense 2007),
have revealed active and inactive branches of magnetic activity
cycles across different types of stars (Brandenburg et al. 2017).
Observations have shown a negative correlation between the
ratio of the magnetic cycle to rotation periods and the Rossby
number, at least on the inactive branch, and the existence of
modulated multi-period cycles, which have been also reported
numerically (Strugarek et al. 2018; Brun et al. 2022). However,
transitions between these activity branches, as well as the scal-
ing of the cycle period with stellar rotation, and the corre-
sponding dynamo mechanisms are still debated (Olspert et al.
2018; Saikia et al. 2018b). Further discrepancies remain, includ-
ing the inability of simulations to fully replicate the Sun’s
convective amplitudes or equatorward propagation of dynamo
waves with a preferred dipolar symmetry and a complex tempo-
ral behavior on long timescales (Raynaud & Tobias 2016). The
magnetic fields resulting from Boussinesq (Busse & Simitev
2006; Goudard & Dormy 2008; Schrinner et al. 2011, 2012)
or anelastic models (Gastine et al. 2012; Schrinner et al. 2014;
Strugarek et al. 2017, 2018; Pinçon et al. 2024) exhibit cyclic
magnetic behaviors with low magnetic Reynolds numbers
and a parity that is often quadrupolar, whereas the Sun’s
magnetic field is dominated by its dipolar components that
have periodic oscillations with very high magnetic Reynolds
numbers.

Surface stellar magnetic fields, reconstructed from the inver-
sion of multiple polarized spectral lines over several stellar
rotation periods with ZDI, are of particular interest, as they
simultaneously infer activity and magnetic topology of stel-
lar dynamos. Examples of stars exhibiting solar-like magnetic
cycles with predominantly dipolar fields during low levels of
activity include 61 Cyg, ε Eri, and κ Cet, with activity periods
of 7 to 13 years (Jeffers et al. 2023), and F-type stars τ Boo
and HD 75332, with shorter cycles of 1 to 3 years (Jeffers et al.
2018; Brown et al. 2021). On the other hand, younger K stars
such as EK Dra and HN Peg have rapidly evolving magnetic
fields without correlation with an S-index. Unexpected poten-
tially acyclic reversals of magnetic topology or minima in activ-
ity have also been observed, for example, in LQ Hya, HD 16620
(Willamo et al. 2022; Lehtinen et al. 2022). During magnetic
reversals, the dominant magnetic topology switches to being
multipolar or quadrupolar (Saikia et al. 2018a). These observa-
tions suggest that stellar cycles can become intermittent and ape-
riodic at certain stages of stellar evolution (Jeffers et al. 2023;
Van Saders et al. 2016; Metcalfe et al. 2022). Although surface
magnetic fields are influenced by small-scale turbulence, their
large-scale components must evolve with the global nature of
the dynamo action, and this coupling represents an important
motivation for the current study.

In this work, we focus on the dynamical mechanisms of
large-scale magnetic behavior in strongly stratified and turbu-
lent models of low-mass stars and show that density stratification
can promote dipolar, albeit aperiodic dynamo states in such sys-
tems. Such stratification separates the flow into an inner layer
of rotationally constrained convective columns and an outer
layer of anisotropic turbulent small-scale convection, thus pro-
moting magnetic pumping of small-scale magnetic fluctuations
inside the tangent cylinder (i.e., the imaginary cylindrical surface
around the inner boundary of our computational domain). This
process enhances the dipolar magnetic mode, which competes
with a more complex multipolar magnetic state and dynamically
interacts with differential rotation, and thus prevents the transi-
tion to anti-solar rotation.

This paper is structured as follows. In Sect. 2, we briefly dis-
cuss the anelastic model and our choice of parameter regime.
In Sect. 3, we describe the dynamo states observed in our sim-
ulations. Section 4 focuses on the dipole solutions that man-
ifest themselves in strongly stratified convection, and Sect. 5
presents the argument for magnetic pumping supporting dipo-
lar solutions. In Sect. 6, we discuss of our results in the context
of previous work and stellar observations, and we conclude with
our findings in Sect. 7.

2. Anelastic simulations

2.1. Setup

We perform direct numerical simulations of the dynamo pro-
cess in anelastic approximation using MagIC code (Gastine et al.
2014), solving equations for velocity, magnetic fields, and
entropy in spherical coordinates (r, θ, φ), as described in
Appendix A. Cylindrical coordinates (rc, φ, zc) are also used
where necessary. Conducting fluid is contained in a shell
between two spheres with radius ratio χ = ri/ro = 0.35, co-
rotating with angular velocityΩ and representing a thick convec-
tive envelope of a solar-like star. Convection is triggered by the
entropy contrast ∆S fixed at the boundaries of the spherical shell,
under assumption of adiabatic background state. Non-uniform
density between the two spheres, modeling density decrease with
radius in stellar envelopes, is set by imposing background den-
sity profile with polytropic index n = 2. The key dimensionless
parameters explored in our work are Rayleigh number Ra and
density contrast Nρ, defined as

Ra =
GMd∆S

νκcp

, Nρ = ln
ρi

ρo

, (1)

where ν is hydrodynamic viscosity, κ thermal diffusivity, cp heat
capacity, d = ro − ri the gap between the two spheres, G gravita-
tional constant, and M the central mass. Rayleigh number deter-
mines the strength of convection relative to diffusive transport;
convection is driven at a certain critical value Racr. This value
increases with density contrast (Jones et al. 2009; Raynaud et al.
2015), and so simulations at high Nρ become challenging. To
approximate stellar conditions, it is necessary to set

R̃a = Ra/Racr � 1, ρi/ρo � 1. (2)

The rest of dimensionless parameters governing the system
are Ekman number E = ν/Ωd2, Prandtl number Pr = ν/κ, and
magnetic Prandtl number Pm = ν/η, where η is magnetic diffu-
sivity. We fixed E = 3×10−4, corresponding to moderate rotation
as compared to viscosity, Pr = 1 and Pm = 2. When compared
to estimations of these parameters in the stars (e.g., Ra ∼ 1020,
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E ∼ 10−15, Pr ∼ 10−7, Pm ∼ 10−5 for the Sun), these values
in simulations can be interpreted as if additional turbulent dissi-

pation was present in the simulations. We note that R̃a is calcu-
lated based on the entropy difference across the convective zone,
which is hard to measure in stellar or planetary context, and
includes dissipative effects in its definition, which are considered
weak in this context. A modified flux-based Rayleigh number
Ra∗

F
= RaNuEk3/Pr2, eliminating dissipative effects and based

on the heat flux that is easier to estimate from observations, has
been proposed by Christensen (2002) and Aurnou et al. (2020)
as a scaling of convection strength. The Nusselt number Nu is
defined as the output luminosity to the basic state luminosity
(see Appendix B). Our data show that flux-based Rayleigh num-

ber scales linearly with R̃a (Table B.1); for simplicity, we keep

R̃a as a parameter in this work.
A typical simulation in our work was set up as follows.

As an initial condition for magnetic, velocity and temperature
fields, we used a steady-state flow snapshots from the convec-
tive dynamo database of Pinçon et al. (2024). Furthermore, we
employ stress-free boundary conditions for velocity field and
insulating boundary condition for magnetic field. Typical res-
olution in our simulations span from Nr × Nφ = [65, 576] to
[241, 1280] where Nr denotes the number of Chebyshev poly-
nomials in radial direction and Nφ the total number of spherical
harmonics. The resolution was set to have at least three order
of magnitude difference between the energy in the largest and
the smallest scales in the energy spectra for each combination

of Nρ and R̃a, and the simulations were run at high resolution
until a steady state was obtained again. After that, the number of
spherical harmonics was reduced to speed up the calculation and
gather long-term flow statistics and snapshots. For more details
on the parameters, flow equations and numerical methods, see
Appendices A, B, and the website of MagIC code1.

2.2. Choice of parameter regime

In this section, we explore Nρ = (2, 4, 6), corresponding to den-
sity ratios of ρi/ρo = (7.4, 54.6, 403.4) between the inner and
the outer spheres. We also provide a motivation for the choice of
parameter regimes for our dynamo study.

First, we compared the flow structures for these three val-

ues of Nρ at the same level of turbulence, R̃a = 32. In rotating
convection, the Coriolis force tends to remove vertical gradients
and align flow structures along the rotation axis. When convec-
tive turbulence sets in, inertia forces due to nonlinear interactions
of flow fluctuations are in competition with the Coriolis force
and tend to break this alignment. The result is a rather three-
dimensional structure of the flow, as is visible from the surface
distribution of the vertical component of flow vorticity in the
bulk of the domain, r/ro = 0.5 for Nρ = 2 (Figure 1a). Since
the density contrast is low in this case, the structure of convec-
tion does not vary considerably along the radius, and thus the
distribution of vorticity across different length scales is similar
both in the bulk of the domain, r/ro = 0.5, and near the surface,
r/ro = 0.9 (Figure 1a,d). However, simultaneously increasing
convection and stratification has a profound effect on turbulent
flow properties: For the same level of convection, its length scale
decreases toward the surface for Nρ = 4 (Figure 1b,e). Further
increase of stratification to Nρ = 6 results in extremely strong
dynamical contrast between the surface and the bulk, where
large-scale, rotationally constrained convective columns develop

1 https://magic-sph.github.io/

at r/ro = 0.5 (Figure 1c), and small-scale, three-dimensional
vortical structures at the surface (Figure 1f). The flow in the
domain is essentially separated in a Coriolis-affected interior and
a strongly turbulent surface layer. The influence of surface lay-
ers on dynamics was often overlooked in the previous works,
although such layers possess strong kinetic helicity and are thus
natural candidates to generate magnetic fields.

Quantitatively, the separation of scales in stratified convec-
tion can be described by the local convective Rossby number,
representing the balance between inertia and Coriolis forces at
each radii,

Rol(r) =
urms(r)

lconv(r)Ω
, lconv =

πEkin(r)
∑

l lEkin
l

(r)
, m , 0, (3)

where urms is the root-mean-square convective velocity and lconv

is the typical length scale of convection calculated from the dis-
tribution of kinetic energy Ekin with spherical harmonic degree l
(Christensen & Aubert 2006), given in the units of d. The energy
contained in the axisymmetric, azimuthal zonal flow 〈uφ〉φ, aver-
aged over longitude φ, is subtracted to separate proper convec-
tive motions from differential rotation driven by them. For stars,
it is not straightforward to estimate this local parameter, and
so global Rossby number, the ratio of stellar rotation period to
empirically inferred convective turnover time, is used instead
(Noyes et al. 1984).

Figure 2a presents the dependence of the local Ro number

with radius for varying Nρ (R̃a = 32, solid). For Nρ = 2, it
is relatively large, Rol ∼ 0.5, and is nearly constant across the
spherical shell. It increases proportionally in the entire domain

with increasing R̃a and enhancement of convection. Increasing
density stratification consistently decreases Rol in the deep inte-
riors, developing there a rotationally constrained zone Rol � 1;
for Nρ = 6, it occupies about a half of the entire simulation
domain. There, the dominance of the Coriolis force enforce
Taylor-Proudman constraint to produce elongated convective
columns, as seen in Figure 1c; effectively, the flow in the bulk
becomes less dependent on the vertical coordinate z. On the other
hand, the radial profile of Rol becomes much steeper through-
out the domain if compared to Nρ = 2. The area with Rol > 1,
developing for Nρ = 4 and 6, corresponds to the strongly tur-
bulent surface layer with inertia-dominated small-scale vortices
(Figure 1f). The increase in Rol at the surface with Ra (Figure 2a)
is accompanied by a decrease of the length scale of convec-
tion (not shown here), meaning that local lconv(r) at the surface
becomes about 5 times smaller than in the bulk. This essentially
creates a scale separation between convection in the bulk and
the surface layer, which can be observed in Figure 1(c,f), with
large scales much more energetic in the bulk, and small scales
at the surface. To develop solutions with such pronounced scale

separation, high values R̃a are needed. Figure 2a shows that Rol

gradually increases with increase of R̃a at the outer shell (dashed
lines, fixed Nρ = 6), developing a surface area where Ro > 1.
Thus, it is the simultaneous increase of density stratification and
enhancement of convection that results in Coriolis force dom-
inating in the bulk, and turbulent inertia dominating the outer
layer.

Previous studies of non-stratified convection showed
that convective turbulence with strong inertia and Rol > 1
develops multipolar, disorganized dynamo solutions
(Christensen & Aubert 2006). Similar behavior was found
for weakly stratified anelastic convection Gastine et al. (2012),
Raynaud et al. (2015), who found that the stability range of

dipolar dynamos shrinks in R̃a with increase of Nρ. In this
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Instantaneous surfaces of the vertical vorticity component of the flow at r/r0 = 0.5 (top) and r/r0 = 0.9 (bottom) illustrating scale separation

developing with Nρ in strongly turbulent convection, R̃a = 32. (a,d) Nρ = 2; (b,e) Nρ = 4; (c,f) Nρ = 6.

Fig. 2. (a) Effect of varying Nρ (in red, Ra/Racr = 32) and Ra (in blue, Nρ = 6) on the local Rossby number calculated based on the convective length
scale lconv (3). Dotted line denotes Rol = 1, e.g., a balance between inertia and the Coriolis force. (b) Density contrasts Nρ and Rayleigh numbers

R̃a spanned by simulations in this work. Different symbols denote three dynamical regimes of the flow, discussed in more details in Sect. 3. Filled
(empty) triangles, predominantly multipolar fields with solar (anti-solar) differential rotation (Sect. 3.2). Circles, quadrupolar oscillatory dynamos
with solar-like differential rotation (Sect. 3.3). Diamonds, reversing dipole-multipole solutions with transitions between three-layered and anti-

solar rotation (Sect. 3.4). Solar- and anti-solar differential rotation is shown in the inset plots depicting zonal flows 〈uφ〉φ for Nρ = 2, R̃a = 32 (left)

and R̃a = 96 (right).

work, we are interested in the joint effect of stratification and
turbulence, and scale separation, on the dynamo properties. We
thus explore parameter space around solutions with Nρ = 4, 6

and R̃a = 32, more representative of stellar flows. The entire
set of our simulations, all in fully turbulent convective regimes,
is schematically presented in Figure 2b. Due to numerical
constraints, we probe a wider range of turbulent states for

Nρ = 2, with R̃a ∈ [32, 96], than for Nρ = 6 (R̃a ∈ [8, 32]).
An important feature of this parameter space is transition

from solar-like differential rotation, with faster equator and
slower poles to anti-solar differential rotation with slower equa-
tor and faster poles (see inset plots in Figure 2b). For Nρ = 2, this

transition takes place between R̃a = 72 and R̃a = 80; our most

stratified flows with R̃a appear to be near the threshold of such a
transition. This affects the properties of dynamo and convection;
for example, the structure of convection is modified by differen-

tial rotation for Nρ = 6 and R̃a, which creates a local increase in

convective length scale near ro and the corresponding local defi-
ciency in Rol (Figure 2a), comparable to the thickness of weak
retrograde zonal jet at the surface (see Sect. 5.4 and Figure 5c).
We note that all simulations discussed below are magnetohy-
drodynamic dynamos; in the absence of feedback of magnetic
stresses on the flow, transition to anti-solar rotation takes place

at lower R̃a.

3. Types of dynamo states in simulations

In this section, we examine the three different types of dynamo
solutions observed in the flow for the set of simulations in
Figure 2b. While all of our simulations are fully turbulent
dynamos with energy spread across a range of scales, their
dynamics is different if the large scales are considered. To illus-
trate these differences, we use the following characteristics: but-
terfly diagrams of the radial component of magnetic field Br,
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(a)

(b)

(c)

Fig. 3. Butterfly diagrams of the axisymmetric, azimuthally averaged magnetic component 〈Br〉φ at the outer boundary. (a) Nρ = 2, Ra/Racr = 32;
(b) Nρ = 6, Ra/Racr = 16; and (c) Nρ = 6, Ra/Racr = 32. To highlight large-scale components, the color maps were saturated with cutoffs of
0.2, 0.25, and 0.1, respectively; the magnitude of magnetic fluctuations is larger by a corresponding factor. Black curves correspond to the surface
dipolarity with cutoff parameter of lcut = 11 (4).

filtered snapshots of the large-scale magnetic field, and zonal
flows. In the following, we discuss in details these diagnostic
quantities and resulting dynamo states.

3.1. Diagnostic quantities

Butterfly diagrams in Figure 3 present the dependence of the
azimuthally averaged radial component of the magnetic field
〈Br〉φ at the surface of the outer sphere, r = ro, as a function
of rotational time Ωt and latitude θ. They serve as a proxy for
both magnetic topology – dipolar or multipolar, and dynamics.
A more quantitative representation of the dynamo topology is
the surface dipolarity,

f
`cut

dip
=


∑1

m=−1 E
l=1,m
mag (ro)

∑`cut

`=1

∑m=+`
m=−` E

l,m
mag(ro)


1/2

, (4)

which is the square root of the ratio between the energy con-
tained in the dipolar spherical harmonic with m ∈ [−1, 0, 1],
l = 1, and the energy contained in the first lcut spherical har-
monics. The classic definition of a dipolar dynamo is fdip > 0.5;
if fdip < 0.5, then the dynamo is considered multipolar. We use
here lcut = 11 as a default output of MagIC code; we found that
decreasing the cutoff length scale in (4) to lcut = 7, perhaps more
realistic for spectropolarimetric observations and ZDI, does not

strongly affect the estimation of f
lcut

dip
. Together with 〈Br〉φ at the

surface, Figure 3 shows this quantity for different solution types.
The color maps were saturated to highlight large scale fields; the
maximum values of magnetic fluctuations close to the surface
are actually much stronger in all our simulations.

Spectropolarimetric observations typically allow one to
reproduce magnetic field topology up to 5−7 spherical harmon-
ics reliably due to mutual cancellation of small-scale magnetic
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Instantaneous snapshots of the surface radial magnetic field Br at r/ro = 0.95 (top) with the same fields filtered to l ≤ 5 (bottom) for
different parameters: (a,d) Nρ = 6, Ra/Racr = 32, multipolar fields; (b,e) Nρ = 6, Ra/Racr = 16, quadupolar waves; and (c,f) Nρ = 6, Ra/Racr = 32,
during dipole period. The color maps in panels (a-c) were saturated to 0.5|Br |max to highlight the spatial structure of magnetic features.

(a) (b) (c) (d)

Fig. 5. Zonal flows (in color) for different types of dynamo solutions corresponding to Figure 3. (a) Nρ = 2, R̃a = 32; (b) Nρ = 6, R̃a = 16; and

(c) Nρ = 6, R̃a = 32, during the low magnetic energy interval with predominance of the dipole on large scales; and (d) Nρ = 6, R̃a = 32, during
the high-energy interval without the dipole. Flux lines corresponds to the poloidal component of Poynting flux (see Sect. 5.4). Coordinates are
denoted in the cylindrical coordinate system (rc, zc). Fluxes and zonal flows were averaged in time over multiple snapshots.

features (Kochukhov 2021). To provide a qualitative comparison
of our models to these observations, we performed spectral fil-
tering of the surface radial magnetic field, Br, with lcut = 5 as
a cutoff parameter. Figure 4 compares these large-scale filtered
fields with the corresponding instantaneous maps of the radial
magnetic field near the surface, r/ro = 0.95.

Finally, we identify the structure of differential rotation by
the axisymmetric component of the toroidal velocity field 〈uφ〉φ,
with brackets 〈· · · 〉φ denoting a spatial average of φ direction.
In the following, we refer to this quantity as zonal flows. The
local sign of the zonal flow is directly related to the mean devi-
ation 〈uφ〉φ/rc of the flow from the solid-body rotation Ω. The
zonal flows for different dynamo solutions in our simulations are
presented in Figure 5, where the corresponding fields were also
averaged in time.

3.2. Oscillatory dynamos in weakly stratified systems

The first type of dynamo behavior develops at low stratification,
Nρ = 2, and corresponds to the less rotationally constrained
runs with higher values of Rol throughout the domain (green tri-

angles in Figure 2b). It is a predominantly multipolar solution
with a signature of distorted waves propagating toward the poles
(Figure 3a). These waves, however, are very weak compared to
the overall turbulent background (see Appendix B and Table B.1
therein). In this regime, the surface dipolarity parameter remains
always smaller than 0.5, so this flow state lacks any prolonged
dipole periods. Consistent with this, the instantaneous snapshots
of Br reveal very small-scale fields from which it is hard to
predict the distribution of their large scales (Figure 4a). When
filtered, it results in a multipolar configuration (Figure 4d) on
large scales, corresponding to low stratification. Such periodic
dynamo solutions have been extensively studied in weakly strat-
ified dynamo models, examples including Schrinner et al. (2011,
2012), Karak et al. (2015), Strugarek et al. (2017), Viviani et al.
(2019). They are usually attributed to Parker-Yoshimura dynamo
waves driven by the mean-field α2Ω or αΩ dynamo mechanisms;
the direction of their propagation is defined by the gradient of
angular velocity. For this reason, here we do not focus on the
particular properties of these waves. See the excellent reviews
by Brun & Browning (2017) and Charbonneau (2020), and the
references therein for more details.

A68, page 6 of 17



Guseva, A., et al.: A&A, 699, A68 (2025)

The differential rotation is solar-like at low R̃a in this weakly
stratified case. Figure 5a shows the resulting profile of 〈uφ〉φ,
averaged in time, for R̃a = 32 (in color). Two opposite mean-
flow directions develop, a prograde jet at the equator and a ret-
rograde jet in the bulk. These flow structures are aligned verti-
cally, and their relative strengths are comparable. Even though

the flow transitions to anti-solar rotation for R̃a ≥ 80, with
inversed meridional distribution (see the inset on the right in
Figure 2b), the average dipolarity of the flow does not increase

with R̃a (Figure 8a) and the dynamo configuration remains non-
dipolar.

3.3. Oscillatory dynamos in rapidly rotating and strongly
stratified systems (large Nρ and Rol < 1 for all radii)

The second type of the dynamo solutions develops when stratifi-
cation is increased to Nρ = 4 or 6, but the levels of turbulence are

weaker, e.g., R̃a ≤ 16 (see the corresponding values of Reynolds
number in Table B.1, increasing with the level of supercriti-
cality). These are rather strongly rotationally constrained sim-
ulations with Rol < 1 throughout the domain (Figure 2a),
corresponding to blue circles in Figure 2b. The dynamo is dom-
inated in this case by large-scale, clearly manifested dynamo
waves (Figure 3b). These waves are predominantly symmet-
ric with respect to equator; in the following, we refer to such
symmetry of magnetic field as quadrupolar. The timescale of
these waves is much slower than in previous, weakly stratified
case (Nρ = 2), with about T/Trot = 500 for wave period as
opposed to at most T/Trot = 100 for weakly stratified flows.
Compared to the dynamo configuration in Figure 3a, the waves
are much stronger and so their spatiotemporal coherency is vis-
ible from magnetic fluctuations at the surface 4b. When filtered
from small-scales, large-scale magnetic field in this case repre-
sent a quadrupolar, axisymmetric field (Figure 4e), with surface
distribution reflecting the moment in time with respect to the
total period of the wave (Figure 3e). Contrary to predominantly
multipolar solution in Figure 3a, in the quadrupolar waves state
all the large-scale modes exhibit nearly periodic behavior, as is
reflected in the oscillation of dipolar component. The dipolarity
in this case is also quite small and does not exceed f 11

dip
≤ 0.3

during its maxima.
Such oscillatory dynamos also exhibit solar-like differential

rotation (Figure 5b), although the topology of the zonal flow is
different. In this case, the prograde jet has a conical shape and
is confined predominantly to the area close to the equator; it
exhibits periodic oscillations, i.e., expands and shrinks during
magnetic cycle in Figure 3b. The opposing, retrograde flow in
the bulk is much weaker than in the previous, low-stratified case;
the overall magnitude of the zonal flow also remains weak.

3.4. Temporal variations of the magnetic field symmetry in
strongly stratified and turbulent systems

Finally, we describe the third type of dynamo solutions that

develops at high levels of turbulence, R̃a = 32 and high strat-
ification, Nρ = 4 or 6, featuring surface layers with Rol > 1
(Figure 2a). These simulations are thus the most representative
of stellar flow regimes, especially for slowly rotating stars, and
corresponds to the diamond symbols in Figure 2b. It represents
an aperiodic dynamo with time intervals of predominantly dipo-
lar configuration (i.e., anti-symmetric with respect to the equa-
tor) and intervals of multipolar magnetic solutions without visi-
ble domination of any particular spherical harmonic (Figure 3c).

During strong dipolar events, the surface dipolarity is large and
reaches the values of f 11

dip
= 0.5−0.6, formally corresponding

to dipolar magnetic fields. The dipolar component is the most
intense at high latitudes, and less visible near the equator, where
magnetic behavior is less coherent.

The large-scale, dipole component exhibits active dynamics,
with two subsequent magnetic reversals around Ωt = 3600, then
loss of coherent magnetic field and development of the multi-
polar magnetic state between Ωt ∈ [4500, 5500], a subsequent
dipole re-appearance at about Ωt = 5500, reversal, and loss at
Ωt = 6000. We ran these simulations for at least one-two mag-
netic diffusion timescale, and we observed that the dynamics per-
sist in time. A similar behavior takes place at the lower density

stratification, Nρ = 4, and strong convection R̃a = 32.
When filtered, magnetic fields show predominantly dipolar

configuration at Nρ = 6, R̃a = 32 during a dipolar interval
(Figure 4f). During non-coherent, multipolar intervals, or dipole
reversals, the field topology appears similar to the one for Nρ = 2
in panel (d). Compared to the total field magnitude in the upper
panels, unfiltered fields are order of magnitude stronger for all
the three cases.

In this case, two different types of differential rotation are
observed at different times in the same simulations. During dipo-
lar periods, a thin retrograde jet develops at the surface, and the
prograde jet shifts to the mid-gap between the spheres. The inner
flow area, including the area inside the tangent cylinder, devel-
ops a very weak retrograde rotation and remains quiescent over-
all (Figure 5c). In the following, we refer to this configuration
as three-layer differential rotation. During multipolar periods,
the dynamo entirely transitions to stronger anti-solar differen-
tial rotation, with a retrograde jet expanding at the surface and
prograde jet shifting into the bulk of the domain, toward the tan-
gent cylinder (Figure 5d). The peak of the shear at the boundary
between the surface retrograde jet and inner prograde jet thus
also shifts in the interior of the domain.

We note here that these aperiodic dipolar solutions exhibit bi-
stability with respect to periodic waves from Sect. 3.3 at Nρ = 6,

R̃a = 32, as shown in Figure 3(b), depending on initial con-
ditions. Slightly increasing Ra would potentially eliminate this
bi-stability.

4. Dynamical properties of the flow and the field in

strongly stratified and turbulent systems

4.1. Predator-prey interaction of zonal flows and magnetic
fields

In this section, we focus our attention on the dynamics
of strongly stratified and turbulent aperiodic dynamo states,
described in the previous Sect. 3.4. To monitor transitions
between the two types of differential rotation in this run, three-
layer and anti-solar, we follow the radial position of umax

φ at the

equator, θ = π/2, i.e., the maximum in the prograde jet. Since
both configurations of zonal flows are aligned with the rota-
tion axis (Figure 5c,d), umax

φ is a good proxy for the type of the

zonal flow: r/ro ∼ 0.4 for anti-solar and r/ro ∼ 0.65 for three-
layer configuration. We plot this quantity in Figure 6a, together
with the total magnetic energy of the flow, Etot

mag. It appears that
the total magnetic energy correlates well with the type of the
zonal flow, developing strong peaks when rotation is anti-solar,
and local minima otherwise. Therefore, these dynamo regimes
exhibit a bi-stability between the flow state with low magnetic
energy and three-layer differential rotation, and the flow state
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Fig. 6. (a) Total magnetic energy as a function of time (in black) versus the radius of 〈uφ〉max
φ in the equatorial plane (θ = π/2), in blue. The large

radii correspond to a three-layer rotation, while low values denote anti-solar rotation (compare Figures 5c,d). (b) The magnitude of the zonal flow,
∆u

eq

φ = |〈uφ〉max − 〈uφ〉min|, in the equatorial plane (in green). The rms of the magnetic Lorentz force is shown in red. (c) The two energy states of
the flow – high and low – in the phase space of the total magnetic energy and the energy of the axisymmetric (zonal) flow, with the points colored

by the rms of the Lorentz force, for Nρ = 6, R̃a = 32.

with high magnetic energy and two-layer, anti-solar zonal flow.
The dynamo transitions between the two states aperiodically,
spending in each state about 500−1000 rotation times. However,
these runs are computationally too expensive to gather accurate
temporal statistics for these stochastically driven transitions.

To explain the physical mechanism behind these reversals,
i.e., whether magnetic fields are driving re-configuration of the
zonal flows, we clarify the causality between the growth and
decay of the magnetic field and the amplitude of the zonal flows.
To this end, we plot a proxy for the strength of zonal flows,
∆u

eq

φ = |〈uφ〉max − 〈uφ〉min| at the equator, together with the rms

of the Lorentz force FLorentz ∝ (∇ × B) × B, as a function of
time in Figure 6b. The strength of the shear increases by a factor
of two during the transitions from three-layer to anti-solar rota-
tion, well before the peaks in Etot

mag develop. This indicates that
the development of anti-solar rotation that temporally enhances
magnetic energy. On the other hand, it is when magnetic field
is the strongest that the magnitude of differential rotation begins
to decrease; these peaks coincide with the maxima in the rms of
the Lorentz force, thus acting as magnetic damping on the zonal
flow. Subsequently, the system returns to low-energy, three-layer
rotation state. Figure 6c summarizes these dynamical transitions
in the phase space of the total magnetic energy, the axisymmetric
kinetic energy of the zonal flow, and the Lorentz force.

4.2. Correlation between the flow state and strength of
dipolar modes

Finally, we link the flow cycles in Sect. 4.1 and the appearance of
large-scale axisymmetric magnetic dipoles in Sect. 3.4. At first,
we compare the radial distribution of magnetic energy contained
in the first 6 spherical harmonics with azimuthal wavenumber
m = 0, corresponding to the large-scale axisymmetric field struc-
tures, during high- and low-energy states for the run with Nρ = 6,

R̃a = 32.
Figure 7a shows the radial profile of these modal energies

at a moment in time (Ωt ≈ 6900) during the high-energy state

with strong anti-solar rotation. The energy in all large-scale har-
monics are comparable, with relatively small-scale component
of l = 6 peaking in the middle of the computational domain. On
the other hand, the energy of axisymmetric dipolar mode with
l = 1, m = 0 is much larger than the rest during a later moment
with low magnetic energy and suppressed, three-layer differen-
tial rotation, even if the energy content decays by a factor of ten
in all modes (Figure 7b). The energy of the dipolar mode peaks at
small radii of r/ro ≈ 0.4 (Figure 7b), which receive their energy
contribution predominantly from the quiescent areas within the
tangent cylinder (Figure 5c). This indicates that axisymmetric
magnetic flux accumulates within the tangent cylinder, consis-
tently with stronger surface fields at high latitudes from the but-
terfly diagrams (Figure 3c). The first minima of the dipolar mode
correlates with the location of the prograde jet in Figure 5c.
When the axisymmetric modes in Figure 7b are normalized by
the radial distribution of the cumulative large-scale energy, the
dipolar mode is still consistently larger then the rest across the
domain.

There is also a systematic increase in axisymmetric dipole
energy with increase of density stratification. To see it, we aver-
age the axisymmetric dipolar mode with l = 1, m = 0 over sev-
eral snapshots during dipolar periods and normalize it by the
total large-scale magnetic energy up to the 7th spherical har-
monic,

∑
El,m≤7. The averages are taken over the low-energy

dipole intervals for Nρ = 4 and 6 with three-layer differen-
tial rotation, and over the whole time integration of Nρ = 2,
since it does not exhibit intervals of predominant dipolarity.
In Figure 7(c), we compare this relative radial distribution of
axisymmetric dipoles for the three values of Nρ. The strength of
the dipolar component indeed consistently increases with den-
sity stratification across the whole domain, especially at low
radii. The buildup of dipolarity at the surface is correlated
with the increase of the dipolar energy in the bulk in the low-
energy states, although it is partially conditioned by the mag-
netic boundary conditions – the energy of all magnetic modes
decays at the surface (see Figure 7a,b). For this reason, we find
that relative volume-distributed characteristics of modal energy,
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Fig. 7. (a,b) Magnetic energy in the first six axisymmetric spherical harmonics (m = 0) as a function of spherical radius r at Nρ = 6, R̃a = 32.
(a) High-energy state, anti-solar rotation, trot ≈ 6900. (b) Low-energy state, three-layer rotation, trot ≈ 7300. The relative buildup in dipolarity
with respect to large scales takes place only during low-energy states with weakened three-layer rotation. (c) The energy in axisymmetric dipole

normalized with the total large-scale magnetic energy up to 7th spherical harmonic,
∑

El,m≤7, at R̃a = 32. The modal energy was averaged over
dipolar intervals for Nρ = 4, 6, and over the whole time evolution for Nρ = 2.
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Fig. 8. (a) Average surface dipolarity of the dynamo solutions, given by equation (4), as a function of Ra at Nρ = 6 (circles) and Nρ = 2 (triangles).
(b) The same quantity as a function of Nρ at Ra = 32. The averages were performed over dipolarity time series such as those in Figure 3.

such as those in Figure 7a,b, are better indicators of low- and
high-energy dynamo states in Figure 6 than, for example, local
in time, weaker peaks in surface dipolarity in Figure 3.

5. Mechanisms of dipole field generation

5.1. Buildup of dipolarity with an increase of Nρ and R̃a

Even though only flow states such as those in Figure 3c have pro-
longed intervals of dipolar magnetic topology in our simulations,
the average values of the dipolarity parameter f 11

dip
systematically

increases with R̃a and Nρ. To illustrate this, we plot in Figure 8

the values of f 11
dip

, averaged in time, for the three different paths in

the parameter space (Figure 2b). In the first one, with low strati-

fication, Nρ = 2 and variable convective strength R̃a, the relative

strength of dipolar mode remains approximately the same even
when the convection is three times stronger (Figure 8a). In the
second one, with high stratification Nρ = 6 (same figure), dipo-
larity linearly increases with Rayleigh number with a scaling of

f 11
dip
∼ 0.01R̃a. The third path, where convection intensity is

fixed, R̃a = 32, and stratification is varied, is shown in Figure 8b.
It also exhibit a linear scaling of f 11

dip
∼ 0.03Nρ, with a somewhat

stronger coefficient than the scaling with R̃a. We note that these
are the mean values of dipolarity; its instantaneous maxima dur-
ing dipolar intervals are higher (Figure 3). With f 11

dip
at Nρ = 6

and R̃a = 32 as a reference, these results suggest that the strength
of the dipolar mode would systematically increase further with

a simultaneous increase in both Nρ and R̃a and thus for realistic
stellar densities further away from the convective onset. In the

A68, page 9 of 17



Guseva, A., et al.: A&A, 699, A68 (2025)

(a) (b)

(c) (d)

Fig. 9. (a) Instantaneous snapshots of the radial magnetic field Br (contours) and radial velocity component vr (color) for Nρ = 2, Ra/Racr = 32
at r/ro = 0.9. The contour levels are [0.1Bmin

r , 0.05Bmin
r , 0.05Bmax

r , 0.1Bmax
r ]. (b) The same for the stronger stratification, Ra/Racr = 32, Nρ = 6. (c)

Two-dimensional probability density of the joint distribution of b2 and vr near the surface, r/ro = 0.9. Left, Nρ = 6; right, Nρ = 2. R̃a = 32. Colors

are spaced logarithmically. (d) Unbiased sample skewness coefficient G1 (5) as a function of R̃a. Red, Nρ = 6, blue, Nρ = 4, green, Nρ = 2.

rest of this section, we aim to explain the mechanisms of this
gradual buildup in dipolarity.

5.2. Surface compression of small-scale magnetic fields

For relatively low stratification, the area occupied by the posi-
tive upflows and negative downflows is approximately the same
at the surface. The color map in Figure 9a illustrate this through
the distribution of radial velocity component ur, perpendicular

to the surface plane, for Nρ = 2 and R̃a = 32. As density gradi-
ent between the two spherical shell becomes more pronounced,
convective cells also become more anisotropic. For Nρ = 6,

R̃a, although the upward motions occupy larger surface, they are
compensated by much stronger and localized downward sweeps
(Figure 9b). Such asymmetry results from pressure fluctuations
enhancing buoyancy driving in downflows and braking buoy-
ancy in upflows (Hurlburt et al. 1984). Hence, the probability of
having extreme negative velocity fluctuations at the surface for
Nρ = 6 is much larger than for Nρ = 2, and so the whole distri-
bution of ur is skewed toward negative values (Figure 9c, in red).
This does not take place at Nρ = 2 where the distribution of ur is
much more symmetric (Figure 9c, in green), and probabilities of
up- and down-flows are nearly equal.

This property of the probability distribution can be charac-
terized by the Fisher-Pearson standardized moment coefficient,

G1 =

√
k(k − 1)

k − 2

(1/k)
∑k

i=1

(
ur,i(r) − ur(r)

)3

[
(1/k)

∑k
i=1

(
ur,i(r) − ur(r)

)2
](3/2)
, (5)

which serves as a measure of the asymmetry of the velocity dis-
tribution at given r (here r/ro = 0.9). We calculated this coeffi-

cient from a series of k flow snapshots for different values of R̃a
and Nρ, and plotted it in Figure 9d. For Nρ = 2, the skewness
coefficient is relatively small and nearly saturates at the largest

values of R̃a. With increase of stratification to Nρ = 4 or 6, the
left tail of the probability density distribution for ur becomes
longer and strong negative downflows progressively more plau-
sible. Here, the distribution skewness does not show signs of sat-

uration with R̃a, indicating that surface convection will become
even more anisotropic if enhanced. We note that the mean val-
ues of ur become more positive as the skewness of its distribu-
tion increases, since the surface area of upward motions expands
(Figure 9b).

This process is related mathematically to development of
convergent flows in stratified flows. In anelastic approximation,
mass conservation equation takes the form

∇ · (ρ(r)u) = 0, ρ(r)∇ · u + ur

∂ρ(r)

∂r
= 0. (6)

In compressible fluids, ∇ · u , 0 and is proportional to ur

according to (6). Since density is a positive-definite function that
decreases along spherical shell, ∂ρ/∂r < 0, convective down-
flows with ur < 0 are linked with the regions of convergent
flows, ∇ · u < 0. These flows are involved in the equation for
magnetic energy:

1

2

∂B2

∂t
= −B2 (∇ · u) + B (B · ∇) u − B (u · ∇B) + · · · , (7)
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where the first term reflects compression of magnetic field lines
and amplification of magnetic energy due to convergent flows.
We illustrate this process with 2D joint probability density dis-
tributions for ur and the radial magnetic field Br (Figure 9c). The
probability densities were computed by binning the data for ur

and Br into 100 and 50 bins of equal size, respectively, in the
same interval of ur ∈ [−2000, 2000] and B2

r ∈ [0, 2000].
The turbulent layer, forming at the surface for Nρ = 6, is

associated with strong magnetic induction process near the sur-
face, generating small-scale magnetic structures. Similarly to
Rol, magnetic Reynolds number Rm = urmsd/η (see Table B.1)

also becomes progressively higher with increasing Nρ and R̃a,
enhancing induction. As a result, the characteristic value of mag-
netic energy fluctuations near the surface also increases with Nρ,
up to 2 times in Figure 9c. For Nρ = 6, strong downward motion
from the negative, long tail of the velocity distribution are associ-
ated with the enhanced probability of stronger magnetic energy,
unlike the upflows of the “shorter", positive tail (Figure 9c, in
red). This effect is much less present for Nρ = 2 (in green),
as the energy of magnetic fluctuations is distributed together
with the more symmetric distribution of velocity fluctuations. In
other words, negative fluctuations of velocity field appear more
correlated with the more energetic field lines in stratified turbu-
lence. We attribute this effect to strong anisotropic sweeps being
able to compress magnetic field fluctuations induced by small-
scale convection at the surface through the term proportional to
B2∇ · u in (7). This process is illustrated by the contours of Br

in Figure 9, which are much more aligned with the localized
downflows for Nρ = 6 (panel b) than for Nρ = 2, where they
are more or less evenly spread across the domain surface (panel
a). This compression provides a mechanism of inward trans-
port of magnetic energy generated by strongly turbulent, rota-
tionally unconstrained small-scale motions in outer layer with
Rol > 1 (Figure 2a), suggesting importance of this region for
the dynamo. To see how it is results in the transfer of magnetic
energy to the large scales, we relate it to the global, mean-field
advection of magnetic field by the flow – magnetic pumping.

5.3. Magnetic pumping

Magnetic pumping is a mechanism of large-scale magnetic field
generation in the mean-field dynamo theory (Moffatt 1978).
Using a set of approximations, the electromotive force, ε, gener-
ating the mean-field from correlated fluctuations of velocity and
magnetic field can be parametrized as

ε = 〈u × B〉 ≈ α〈B〉 + γ × 〈B〉 + · · · , (8)

where 〈B〉 is large-scale, axisymmetric magnetic field. In the
expression above, higher-order contributions, proportional to
derivatives of 〈B〉 and corresponding to the turbulent diffusion,
were omitted for simplicity. In (8), α-effect generates large-
scale field through perturbing magnetic field lines by cyclonic
motions, and γ × 〈B〉 describes the pumping of magnetic field
with a speed γ. The mean-field induction equation shows that γ
is an addition to the mean velocity that also acts on the mean
magnetic field:

〈B〉t = ∇ × (〈U〉 × 〈B〉 + γ × 〈B〉 + α〈B〉 − ηT∇ × 〈B〉) . (9)

In essence, magnetic pumping is a turbulence-generated com-
ponent of the electromotive force (Drobyshevski 1977) that
can help redistribute magnetic energy to large scales. In rotat-
ing convection, it can be viewed as a systematic transport of
magnetic energy by anisotropic convective columns toward the

bulk of the domain: convective structures are stretched verti-
cally if their location is perturbed inward, and this increases
the length scales of magnetic flux tubes that are carried by
them (Schrinner et al. 2012). Equation (9) shows that this effect
is capable of generating large-scale magnetic fields. However,
evaluating γ is not straightforward. The most rigorous way is
the test-field method, but it requires solving a set of additional
equations (Schrinner et al. 2012) for auxiliary variables. Another
frequently used method is the method of snapshots, i.e., point-
wise reconstruction of the tensor coefficients from time series of
ε and mean magnetic fields at each point in the computational
domain (Simard et al. 2016). This method is more straightfor-
ward to use, yet it suffers from noise in strongly turbulent condi-
tions such as those explored here and may not always give cor-
rect results (Warnecke et al. 2018). To unambiguously quantify
the transport of magnetic energy across the domain for different
parameter regimes in our simulations, we used an indirect mea-
sure of this process, the Poynting flux, averaged over longitude
and in time:

FPoynting ∝ 〈(v × B) × B〉φ,t = 〈B2u⊥〉φ,t. (10)

This vector describes the direction in which magnetic energy is
transported by the velocity u⊥ perpendicular to magnetic field
lines.

In Figure 10 we plot the distribution of the radial compo-
nent of Poynting flux with radius, integrated in latitude θ, for
three series of simulations in Figure 2b. The influence of stratifi-

cation on the flux at a given R̃a = 32 is relatively clear: while
for Nρ = 2 the flux is nearly zero throughout the domain, it
becomes negative for Nρ = 4, reflecting the inward transport
of magnetic energy toward the inner sphere (Figure 10a). For
Nρ = 6, this flux becomes more localized, with a strong peak
developing near the surface, at r/ro = 0.9. This flux results from
consistent enhancement of turbulence near the outer shell, and
becomes more and more pronounced as R̃a grows (Figure 10b).
This indicates that the energy generated and compressed by
anisotropic convection in the turbulent surface layer is system-
atically transported into the deep interiors. On the other hand,
in weakly stratified flows (Nρ = 2), the enhancement of con-
vection results in magnetic flux becoming predominantly posi-
tive throughout the domain, and the outward transport of mag-
netic energy (Figure 10c). This is potentially related to inver-
sion of magnetic pumping effect: energetic turbulent motions,
developing near the inner sphere, expel outward generated by
them magnetic fluctuations. Although a region of negative flux

develops around r/ro ≈ 0.9 at the outer surface for R̃a = 96, it
is entirely compensated by even stronger flux expulsion region
at r/ro ∈ [0.35, 0.8]. Correspondingly, the average energy of

large-scale dipole fields remains low with increase of R̃a in
weakly stratified flow, while for strongly stratified cases dipo-
larity increases (Figure 8a).

We note that the dependence of Poynting flux on the radius

is non-monotonic. For example, the flow with Nρ = 6, R̃a = 32
case has two regions of negative flux buildup, separated by a
minimum at r/ro ≈ 0.7. It also varies with parameter regime:

unlike for R̃a = 32, R̃a ≤ 16, the flux is enhanced nearly
throughout the whole domain. This suggests that the flux dis-
tribution is a 2D function of both r and θ. To clarify this point,
we show the streamlines of the poloidal component of the Poynt-
ing flux, FP

Poynting
= Frer + Fθeθ in Figure 5. The corresponding

magnetic regimes are described in Sect. 3. For Nρ = 2, where the
integrated in θ flux is weak, the flow is separated in three differ-
ent regions – inward-flux zone near the equator, outward around

A68, page 11 of 17



Guseva, A., et al.: A&A, 699, A68 (2025)

(a)

60 40 20 0 20
FPoynting

0.4

0.6

0.8

1.0

r/
r o

Nρ =6

4

2

(b)

60 40 20 0 20
FPoynting

0.4

0.6

0.8

1.0

r/
r o

R̃a=32

16

8

4

(c)

20 0 20 40 60
FPoynting

0.4

0.6

0.8

1.0

r/
r o

R̃a=64

72

96

Fig. 10. (a) Poynting flux (10), integrated in latitude θ, as a function of spherical radius r and Nρ, R̃a = 32. (b) Poynting flux as a function of R̃a,
Nρ = 6. (c) Same but for Nρ = 2.

the mid-gap, and another inward-flux zone near the inner sphere

(Figure 5a). For Nρ = 6 and R̃a = 16, where the large-scale
coherent waves develop, Poynting flux is consistently directed
inward across the entire domain, except for a narrow zone at the

equator. Unstable dipole dynamos (Nρ = 6, R̃a = 32) develop
three interchanging positive and negative regions of magnetic
flux (Figure 5c), similarly to weakly stratified case in panel (a).
But unlike Nρ = 2, in this case the width of the inner region of
inward-directed flux is considerably larger, and occupies more
than half of the domain; there is a clear negative (positive) ver-
tical flux of magnetic energy in upper (lower) hemisphere. This
suggests more efficient transport of magnetic flux in the polar
regions, similarly to flux distribution of axisymmetric large-scale
dynamo waves (Figure 5b). We note that dipolar field component
is most prominent in the polar regions inside the tangent cylinder
(Figure 3c and also meridional slices of 〈Br〉φ, not shown).

5.4. Poynting flux and zonal flows

Figure 5 also demonstrates that the local direction of the Poynt-
ing flux and the effective surface from which magnetic flux is
advected inside the domain is linked to the distribution of zonal
flows. The distribution of magnetic flux lines for weakly strati-

fied turbulence at Nρ = 2 and R̃a = 32 shows that the convergent
flux zone at the equator is the bulk is correlated with the area of
strong shear between the prograde and the retrograde jets, where
part of the Poynting flux is transformed from poloidal to toroidal
(Figure 5a). The maximum of the retrograde jet in the bulk coin-
cides with divergent flux zone, and seemingly isolates the area
of flux accumulation inside the tangent cylinder. Since the jet is
located close to the tangent cylinder, the surface from which the
flux accumulates is effectively small. The flows with strong strat-

ification and weaker turbulence (e.g., Nρ = 6, R̃a = 16), featur-
ing large-scale oscillatory dynamos, also exhibit anti-solar rota-
tion (Figure 5b). However, inner retrograde flow in the bulk is
very weak in this case, and so the flux is directed predominantly
radially everywhere and collected from nearly all latitudes.

The flows with Nρ = 4, 6, and R̃a = 32, develop two differ-
ent types of differential rotation: weaker three-layer and stronger

anti-solar (Figure 5c,d). Although a fraction of Poynting flux is
sheared near the surface by the interface between the equato-
rial retrograde jet and its neighboring weak prograde flow dur-
ing the intervals with three-layer rotation, the prograde jet is
located further away from the inner sphere (Figure 5c). The cor-
responding quiescent area in the bulk, where radially directed
flux accumulates, occupies the area twice as large than that of
Nρ = 2 (Figure 5a). In the second configuration of anti-solar
rotation, Poynting flux is again directed downward in the equa-
torial region of the surface retrograde jet. However, this flux
is sheared at the interface between the two layers of the zonal
flow and becomes less coherent within the prograde jet area.
This results in strengthening of axisymmetric toroidal compo-
nent of magnetic field in the equatorial region during multipolar,
high-energy intervals (not shown here). In the meanwhile, ver-
tical advection of magnetic energy inside the tangent cylinder
is disrupted, and the large-scale dipole component is lost. For
weakly stratified and strongly turbulent cases such as Nρ = 2,

R̃a = 96, similar configuration of zonal flows, accompanied by a
stronger prograde jet near the tangent cylinder (Figure 2b, inset),
results in positive sign of Poynting flux and expulsion of mag-
netic energy from the bulk (Figure 10c).

6. Discussion

Recent observations have shown magnetic dynamics either in
the form of periodic oscillations or reversals are encountered in
low-mass stars (Jeffers et al. 2023). While many of them have
a dipolar magnetic topology, others show a mix of dipolar and
quadrupolar magnetic fields (Willamo et al. 2022). The mag-
netic topology and dynamics in our simulations, as given by Fig-
ures 3 and 4, are representative of these observations. In our most
strongly stratified and turbulent runs, such as those in Figure 3c,
which are closer to stellar conditions, the magnetic field behaves
aperiodically. The reversals and switches between the dipolar
and multipolar topologies through dipole decay and buildup take
place on a timescale of 50−100 rotation units. With the average
solar rotation rate of 28 days as a reference, the reversals of the
magnetic field in our model would take place on a timescale of
4-8 years, which is compatible with spectropolarimetric observa-
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Fig. 11. (a,b) Components of the mean-field γ-coefficient calculated for Nρ = 4, R̃a = 32 using the method of snapshots (Simard et al. 2016). (a)

Radial component, γr. (b) Latitudinal component, γθ. (c) Total magnetic energy near the surface (r/ro = 0.9) for run Nρ = 6, R̃a = 32 as a function
of spherical harmonic degree l for high- (tH) and low-energy (tL) dynamo states.

tions. We note that to make a one-to-one comparison with ZDI
magnetic maps, one needs to take into account the inclination
of the rotation axis and the number of observations per rotation
period of a star (Hackman et al. 2024).

Our analysis of correlation between radial velocity and mag-
netic field at the surface, together with enhancement of inward-
directed Poynting flux, indicates that magnetic pumping mecha-
nism is responsible for development of such large-scale axisym-
metric magnetic states in strongly stratified turbulence. Develop-
ment of turbulent, rotationally unconstrained thin surface layer
at Nρ = 4 and Nρ = 6 (Figure 2b), accounting for 10−20%
of the entire domain, is a natural outcome of such convection.
Such a layer can contribute to both induction of magnetic fluctu-
ations, and to transport of this energy inward (Figure 9c). We find

that the increase in dipolarity with Nρ and R̃a in our simulations
(Figure 8) is correlated with enhancement of inwardly directed
magnetic Poynting flux (Figure 10a,b), as opposed to low-
stratified turbulent cases where magnetic energy is expelled out-
ward (Figure 10c). These results are in agreement with previous
studies of magnetic pumping effect in Cartesian geometry, for
example with Tobias et al. (1998), who found that strong down-
flows in stratified convection can advect magnetic field sheets
initially located at the top of convection zone downward, thereby
concentrating magnetic energy at radiative-convective interface.
This effect is also considered one of the main ingredients in
solar dynamo theory, as it is able to counteract magnetic buoy-
ancy bringing magnetic flux tubes to the surface (Brandenburg
2005). More recent studies in global spherical geometry also
found compression to be an important mechanism for genera-
tion of strong magnetic fields, which enforce solar-like prograde
rotation at the equator through the magnetic transport of momen-
tum (Hotta et al. 2022).

The magnetic pumping coefficient γ is a velocity-like vector,
and therefore magnetic pumping is in fact a three-dimensional
effect (Ossendrijver et al. 2002). To confirm its presence in our
simulations, in Figure 11a,b we show the radial and the latitudi-
nal components of γ, as derived in equation (8), calculated using
the method of snapshots (Simard et al. 2016) on the data from

dipolar solution at Nρ = 4, R̃a = 32. The radial component
of γ-effect is negative in the areas inside the tangent cylinder
at high latitudes, indicating overall inward advection of mag-

netic field in these areas (Figure 11a). On the other hand, in the
outer, equatorial region of strong shear, γr is positive, indicat-
ing outward pumping. The latitudinal component, γθ, is anti-
symmetric with respect to the equator, with reflects equivalent
converging flows in the equatorial plane and divergent flows in
deep interiors (Figure 11b). These results are consistent with
manifestation of the large-scale field predominantly at high lat-
itudes (Figure 3). Moreover, the spatial distribution of γr and
γθ is compatible with previous results for stratified convection
leading to dipolar solutions (Schrinner et al. 2012), which sug-
gests that axisymmetric magnetic pumping mechanism, induced
by the combination of stratification and strong turbulence at the
surface, is indeed responsible for the encountered in simulations
dipoles. Such mechanism could be also responsible for the dipo-
lar stellar-like dynamo with co-existing small- and large-scale
fields at the surface reported in Yadav et al. (2015), although
with much smaller values of Rol ≤ 0.04 and thus more rotation-
ally constrained. As Nρ is increased, γ obtained with the method
of snapshots becomes considerably more noisy yet its structure
is similar; we leave its detailed analysis for the future work.

Another measure of spatially distributed transport of elec-
tromagntic energy, meridional distributions of Poynting flux, is
vertically aligned due to the system rotation and depends on
the distribution of zonal flows (Figure 5), suggesting that dif-
ferential rotation plays an important role in re-distributing the
flux across the domain. Stronger zonal flows in the area of tan-
gent cylinder prevent magnetic flux from accumulating there
and result in non-axisymmetric solutions with smaller scales
(Figure 5a,d). Weakened zonal flows in this area are accompa-
nied by more axisymmetric magnetic fields, either quadrupolar
or dipolar (Figure 5b,c). In agreement with Figure 11, more qui-

escent polar zones seems to be the locations where magnetic
energy transport is most prominent (Figure 5b,c). In all these
cases, the distribution of Poynting flux is strongly constrained
by zonal flows, with the regions of strong differential rotation

acting as radial flux attractors and transforming it into poloidal
flux and fields.

The transition between periodic large-scale waves and dipo-
lar solutions has been attributed previously to increase of
the period of oscillatory dynamo solutions due to fluctuations
in α-effect in simplified one-dimensional mean-field dynamo
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models (Richardson & Proctor 2010). We suppose that similar
mechanism can be responsible for destabilization of the periodic

large-scale waves at Nρ = 4 and 6 with increase of R̃a, although a
rigorous analysis of temporal fluctuation of α-effect and the cor-
responding mean-field equation is needed to confirm this in the
future. In our simulations, such non-oscillatory dipolar solutions
are unstable and exhibit either reversals of polarity or stochastic
transitions to a multipolar state with higher energy, as described
in Sect. 4. We interpret this unstable behavior as a predator-prey
interaction of zonal flow and magnetic field: the system attempts
to escape to a state with strong anti-solar rotation and strong tur-
bulent magnetic fields, while increasing magnetic tension from
these fields pushes it back to the original state with weaker, dipo-
lar magnetic field and weaker three-layer rotation. This is par-
ticularly visible from the phase space map in Figure 6c, with
flow trajectories colored by the Lorentz force. Such predator-
prey transitions have been observed before both in hydrody-
namic convection (Busse & Simitev 2006) and in dynamo sim-
ulations as Type 2 modulation producing minima in magnetic
activity (Raynaud & Tobias 2016). We suggest that such quasi-
stable flow states result from the flow being at the verge of transi-
tion between anti-solar and solar rotation. While magnetic fields
tend to postpone such a transition compared to pure hydrody-
namic flows (Fan & Fang 2014; Karak et al. 2015), such a transi-

tion nevertheless takes place in the range of about R̃a ∈ [70−80]
in our magnetohydrodynamic simulations for the least numeri-
cally demanding regime of Nρ = 2 (Figure 2b). Development of
the strongly turbulent shear layer with Rol ≤ 1 at the surface is
correlated with the transition between solar- and anti-solar rota-
tion for all explored Nρ, which suggests that the presence of this
layer can induce this transition. We thus expect that with fur-
ther enhancement of convective forcing the three-layer differen-
tial rotation (Figure 5c) would be lost and anti-solar state would
become the only solution. Yet the aperiodic switches between the
two different shear topologies in our aperiodic dipole solutions
suggest our parameter regime can be close to bi-stability of mag-
netically controlled transition between solar- and anti-solar rota-
tion, essentially for a stronger density contrast than ρi/ρo = 12
reported by Karak et al. (2015), who did not find bi-stable behav-
ior. The three-layer structure of differential rotation, obtained
thanks to the high Nρ, is an interesting new result that resembles
the near-surface shear layer in the Sun (Vasil et al. 2024); in the
future, we will extend our study to even higher Nρ to study the

stability of this structure with R̃a and magnetic field. The influ-
ence of the latter can be particularly important, since magnetic
field impacts both alignment or non-alignment of the flow with
the axis of rotation (Pinçon et al. 2024), and the sign of differen-
tial rotation (Brun et al. 2022).

Finally, we show the energy spectra during low- and high-

energy states in the outer region (r/ro = 0.9) for Nρ = 6, R̃a =
32, as a function of spherical harmonic degree l (Figure 11c).
The spectra are in agreement with the time series of mag-
netic energy for the two flow regimes in Figure 6, with energy
decreased across all spherical harmonics during quasi-dipolar
state. The l-spectra in this regime shows a certain degree of
separation between the large and the small scales, with a peak
on small scales around l = 20 and buildup of energy at the
dipolar mode with l = 1. It is this buildup that is observed as
enhanced dipolarity, when magnetic field is filtered at the sur-
face. During the high-energy state, all spherical harmonics but
the smallest ones receive additional amount of energy, so that
the spectrum fills up and does not show anymore the signs of
scale separation. It is possible that this scale separation appears

due to spatial anisotropy of stratified convection, separating gen-
eration of small-scale magnetic fluctuations at the surface from
large-scale fields generated through magnetic pumping. How-
ever, even stronger density stratification is necessary to see
whether the trend of scale separation becomes more pronounced;
we leave exploring this idea in depth for the future work.

7. Conclusions

Previous studies of stratified convective dynamos
by Gastine et al. (2012) and Raynaud et al. (2015) reported
dipole collapse with an increase in density stratification

and explored parameter regimes with lower values of R̃a
and Nρ ≤ 3 than those explored in this work. Essentially,
these dipolar dynamos correspond to classic steady low-
Ro dynamos and are quickly destabilized by inertia when
Ro ∼ 0.1 (Christensen & Aubert 2006). In this work, we
explored more stratified and turbulent models, up to Nρ = 4, 6

and R̃a = 32, which resulted in larger integral values of Ro > 0.1
(Table B.1).

In all of our models, magnetic fields feature a broad spread
of energy across spherical harmonics with many small-scale
magnetic fluctuations at the surface (Figure 11c). According
to the classic definition of dipolarity as the ratio between the
energy of the dipole and the total magnetic energy (used by
Gastine et al. (2012)), such fields would be classified as multi-
polar and small scale. Here, we compared the strength of the
dipolar mode with the energy of up to 7−11 large-scale spher-
ical harmonics (equation 4). The strength of the dipolar com-
ponent consistently increases with both stratification and turbu-
lence vigor, suggesting similar magnetic regimes are possible in
low-mass stars, which frequently feature dipolar magnetic fields.
On the large scales, our models reproduce magnetic topologies
commonly observed in these stars: multipolar, oscillatory, and
dipolar. They also reproduce the main dynamical ingredients of
such fields, such as dipolar reversals, and transitions between
dipolar and multipolar regimes. With the averaged solar rota-
tion rate as a reference, reversals of the magnetic field in our
model would take place on the timescale of 4 to 8 years, which
is compatible with spectropolarimetric observations of stellar
cycles (Jeffers et al. 2023). We argue that this large-scale defi-
nition of dipolarity (4), defined up to a suitable low-order trun-
cation threshold lcut, better characterizes magnetic topology in
stellar dynamo models given that large-scale fields detected by
spectropolarimetry are an order of magnitude smaller than total
fields from stellar photometric observations.

We identified that one of the direct consequences of increas-
ing both stratification and turbulence is the development of the
turbulent surface layer with surface Rol > 1 and weakened
influence of the Coriolis force, while the deep interiors of the
flow become increasingly rotationally constrained (Figure 2a).
Strong downflows promoted by the anisotropic convection of
the turbulent surface layer, together with stratified and more
quiescent convective columns in the flow interiors, induce an
axisymmetric magnetic pumping mechanism that scales with

Nρ and R̃a. This physical mechanism could be relevant for
dominant magnetic mode selection in other irregular magnetic
cycles previously reported in the slowly rotating stellar mod-
els of Yadav et al. (2016), Strugarek et al. (2018), Viviani et al.
(2018) at lower stratification. Our results suggest that magnetic
pumping consistently enhances the dipolar component in our
simulations to the point where prolonged dipolar periods on the
order of 500−1000 rotation times are observed for Nρ = 4 and
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6, R̃a = 32. These runs are on the bounds between solar- and
anti-solar transition, and they exhibit dynamical interaction of
the magnetic field and the zonal flows, transitioning between
the low-energy dipolar state with weakened three-layer rotation
and the high-energy multipolar states with a stronger anti-solar
rotation. As in Brun et al. (2022), we observed that the Lorentz
force can change the configuration of the differential rotation in
simulations where Rol > 1; this phenomenon is favored when
Nρ is high. These dynamical interactions suggest additional
observational constraints based on the relation between stellar
fields and internal differential rotation. Such constraints could
be obtained from joint spectropolarimetry and asteroseismology
studies.

It is yet to be shown how magnetic pumping effects extrap-
olate to higher values of Ra and Nρ and whether dipolar solu-
tions are constrained by the transition between solar-antisolar
rotation. However, the enhancement of large scales, together
with the emergence of the surface dipole and quadrupole fields
in strongly turbulent convection suggests a new framework for
modeling dynamical magnetic effects in the DNS models of stel-
lar convection. This framework supposes seeking models and
parameter regimes that (i) capture dynamics of large magnetic
field scales and (ii) capture the energy balance between large-
and small scales that depends on the depth. Such models will be
the aim of our future work. Although magnetic dipoles are not
steady states in our simulations, their existence at the interface
of oscillatory quadrupolar and non-coherent multipolar solutions
indicates a parameter path for further exploration of such states
in stellar dynamos, which is extremely expensive numerically in
these parameter regimes.
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Appendix A: Anelastic model

In this work, we use LBR anelastic approximation, as
described by Braginsky & Roberts (1995), Lantz & Fan (1999),
Jones et al. (2011). The reference thermodynamic state of the
system is assumed to be close to adiabatic hydrostatic equilib-
rium, and follows the polytropic structure for pressure, density
and temperature,

P = Pcw
n+1 , ρ = ρcw

n , T = Tcw , (A.1)

with

w = c0 +
c1d

r
, c0 =

2wo − χ − 1

1 − χ
, (A.2)

c1 =
(1 + χ)(1 − wo)

(1 − χ)2
, wo =

χ + 1

χ exp(Nρ/n) + 1
, (A.3)

with reference values Tc, ρc and Pc at the mid-gap between the
sphere boundaries, and ξ = ri/ro.

In this approximation, we solve three equations for velocity
field u, magnetic field B and the entropy of the flow S :

∂u

∂t
+ u · ∇u = −

Pm

E
∇

(
P′

wn

)
+

RaPm2

Pr

S

r2
er −

2Pm

E
ez × u

+
Pm

Ewn
(∇ × B) × B + PmFν , (A.4)

∂S

∂t
+ u · ∇S =

Pm

wn+1Pr
∇ ·

(
wn+1
∇S

)

+
Di

w

[
(∇ × B)2

Ewn
+ Qν

]
(A.5)

∂B

∂t
=∇ × (u × B) + ∇2

B (A.6)

∇ · B =0 (A.7)

∇ · (wn
u) =0 . (A.8)

Here P′ denotes the pressure perturbation of the reference
state. The viscous force Fν can be expressed Fν = w

−n
∇S, where

S is the rate of strain tensor,

Si j = 2wn

(
ei j −

1

3
δi j∇ · u

)
, ei j =

1

2

(
∂ui

∂x j

+
∂u j

∂xi

)
. (A.9)

The dissipation parameter Di and the viscous heating Qνare
given by

Di =
c1Pr

PmRa
, Qν = 2

[
ei jei j −

1

3
(∇ · u)2

]
. (A.10)

Equations above were scaled with the shell width d = ro − ri,
magnetic diffusion timescale d2/η, by entropy difference ∆S =
S (ri) − S (r0), pressure scale Ωρcη, density scale ρc, temperature

by Tc, and magnetic field scale
√
Ωρcµη, where µ is the mag-

netic permeability. Resulting dimensionless parameters Pm, Pr,
E, and Ra are described in the text in section 2.

Appendix B: Simulation parameters

In stratified convection, both the critical Rayleigh number Racr,
and the azimuthal wavenumber of the dominant convective

mode, increase with density contrast (see, e.g., Raynaud et al.
2018). The higher is density stratification, the higher is the
numerical resolutions needed to resolve all the flow scales. In
table B.1 we give the values of Racr employed in our simula-
tions that allowed us, together with section 2 and figure 2b, to
reconstruct the whole parameter space spanned by simulations
in this work as well as several diagnostic quantities of each run.
The term Racr denotes the critical value of Ra for the onset of

convection, R̃a = Ra/Racr denotes the distance from the onset,
and Ra∗

F
= RaNuEk3/Pr2 denotes modified flux-based Rayleigh

number. The term Nu is defined as the ratio between the lumi-
nosity of the convective model, where the integral is taken over
the top spherical boundary, and the basic state luminosity of the
conductive state:

Nu =

∫
S
−κρT ∂S

∂r
r2 sin θdθdφ

4πnc1ξ
n
i

(
exp Nρ − 1

)−1
. (B.1)

In addition, we give the Rossby number Ro = uI
rms/(l

I
convΩ),

based on the integrated over r convective length scale and rms
velocity in equation (3), as introduced by Christensen & Aubert
(2006). The Reynolds number and magnetic Reynolds numbers
are defined as Re = uI

rmsd/ν and Rm = PmRe, respectively, and
represent kinetic energy characteristics of each run. Finally, we
present the energetics for magnetic field of the runs in the last
two columns of table B.1, measured as the ratio of large-scale

axisymmetric components E
l≤7,m=0
mag and the energy contained in

all large scale harmonics El≤7
mag, similarly to section 4.2. In the

last column of table 2 we compare the ratio between the axisym-
metric and the total magnetic energy. These are typically order of
magnitude smaller compared to the large-scale estimates, except
for the runs n41, n62, n63 which feature energetic quadrupolar
dynamo waves described in section 3.3.

The difference between weakly stratified (section 3.2) and
strongly stratified oscillatory solution (section 3.3) is that the lat-
ter contains much more energy in the axisymmetric modes, and
shows approximately the same proportion of axisymmetry with
respect to both large-scale and total magnetic energy (runs 41,
n62, n63). On the other hand, the weakly stratified oscillatory
solutions show (runs n21-24) have much weaker axisymmet-
ric component, especially in comparison to the total magnetic
energy. We note that axisymmetric energy decreases in propor-
tion to the total magnetic energy for more stratified runs (Nρ = 4
and 6). This is due to the development of surface layer generating
small-scale, non-axisymmetric magnetic fluctuations, which are
then factored in total energy estimates. The time-averaged char-
acteristics in table B.1 also do not take into account change in
energy as the dynamo undergoes dipolar-multipolar transitions.
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Table B.1. A summary of simulations in this paper and their parameters.

Label R̃a Ra∗
F

Ro Re Rm Nu E
l≤7,m=0
mag /El≤7

mag Em=0
mag /E

tot
mag

Nρ = 2, Racr = 1.483 · 105

n21 32 2.32 · 10−3 0.615 517 1035 18.1 0.146 0.043

n22 64 7.31 · 10−3 0.955 816 1633 28.5 0.102 0.0287

n23 72 7.75 · 10−3 0.971 865 1731 26.9 0.147 0.0294

n24 96 12.82 · 10−3 1.01 1224 2448 33.4 0.137 0.044

Nρ = 4, Racr = 4.224 · 105

n41 16 2.74 · 10−3 0.393 528 264 9.2 0.254 0.091

n42 32 9.28 · 10−3 0.664 459 918 15.6 0.150 0.028

Nρ = 6, Racr = 6.898 · 105

n61 4 0.13 · 10−3 0.057 28.4 56.8 1.76 0.03 0.037

n62 8 0.41 · 10−3 0.116 57.6 115.3 2.75 0.597 0.264

n63 16 1.05 · 10−3 0.181 98 197 3.5 0.437 0.202

n64 32 3.76 · 10−3 0.295 352 704 6.3 0.293 0.071

Notes. All parameters were averaged over time, except of R̃a. The run n61 with R̃a = 4 near convection onset corresponds to weakly developed
turbulence and has a strongly non-axisymmetric large-scale magnetic field, concentrated in the southern hemisphere and was not discussed here in
detail.
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